Silicon Designs Adds New G-Ranges, End-User Features to MEMS Inertial Accelerometer Family

Silicon Designs announced additional new g-ranges and end-user enhancements have been added to its Model 2227 MEMS inertial accelerometer series.

Initially launched in October 2018 as a strictly ±25-g product, the Series is now offered in both ±10 g and ±50 g ranges, respectively. Stock quantities of all three models are immediately available for customer shipment.

In addition to its direct drop-in replacement compatibilities, in terms of industry-standard form factor and pin configuration, with traditional quartz inertial accelerometers, Model 2227 Series units now include a built-in adjustable scaling factor. The scaling factor allows an end-user to achieve greater accelerometer voltage output flexibility, at any specified g-range, of as much as 25%.

Overall design of the Silicon Designs rugged Model 2227 Series combines two patented capacitive silicon sense elements (U.S. Patent Number 4,736,629) and a precision, custom CMOS integrated circuit. The elements and circuit are housed together within a compact, low mass, hermetically sealed LCC package.

Modules are assembled on a high-temperature open printed circuit board (PCB) with a circuit that converts the MEMS accelerometer differential output voltage into a level of current directly proportional to the amount of applied acceleration. The resulting design allows the Series to achieve the necessary low-noise, high-stability, long-term repeatability and low power for today’s inertial navigation applications, at a competitive price point.

Final testing is conducted on a temperature-tumble-system, ensuring thermal calibration parameters that simplify accelerometer use with the customer’s own real-time temperature compensation and modeling software.

Visit for more information.